Half-sandwich rhenium(III) acyl complexes: synthesis, structure and conversion to rhenium(I) and rhenium(III) isonitrile complexes ${ }^{1}$

Alexander C. Filippou *, Bernhard Lungwitz ${ }^{2}$, Gabriele Kociok-Köhn, Isolde Hinz
Institut fiur Anorganische und Allgemeine Chemie, Humboldt-Universitüt zu Berlin, Hessische Strasse 1-2, D-10115 Berlin, Germany

Received 2 March 1996

Abstract

The synthesis, structure and reactions of rhenium(III) η^{\prime}-acyl complexes bearing a cyclopentadienyl (Cp) or a pentamethylcyclopentadienyl ($\mathrm{Cp}{ }^{*}$) ligand are described. Oxidation of the rhenium(I) acyl complex $\mathrm{Li}\left[\mathrm{CpRe}(\mathrm{CO})_{2}\left(\eta^{1}-\mathrm{PhCO}\right)\right]$ ($\mathbf{1}$) with one equivalent of PhICl_{2} affords the rhenium((III) acyl complex trans-CpRe(CO) ${ }_{2}\left(\eta^{\prime}-\mathrm{PhCO}\right) \mathrm{Cl}$ (trans-2a). The diphenylcarbene complex $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Re}=\mathrm{CPh}_{2}(3)$ is also formed in this reaction. Similarly, oxidation of 1 with Br_{2} gives cis / trans-CpRec $(\mathrm{CO})_{2}\left(\eta^{1}-\mathrm{PhCO}\right) \mathrm{Br}$ (cis / trans-2b), which can also be obtained from the alkoxycarbene complex $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Re}=\mathrm{C}(\mathrm{OEt}) \mathrm{Ph}(4)$ with one equivalent of Br_{2}. Oxidation of $\mathrm{Li}\left[\mathrm{Cp} \cdot \mathrm{Re}(\mathrm{CO})_{2}\left(\eta^{1}\right.\right.$ $\mathrm{PhCO})$ (5) with one equivalent of $\mathrm{PhICl}_{2}, \mathrm{Br}_{2}$ or I_{2} affords selectively the rhenium(III) acyl complexes cis $/$ /rans $-\mathrm{Cp} \cdot \mathrm{Re}(\mathrm{CO})_{2}\left(\eta^{\prime}\right.$ $\mathrm{PhCO}) \mathrm{X}(\mathrm{X}=\mathrm{Cl}-\mathrm{I})$ [cis / Itrans-(6a-6c)]. Cleavage of the $\mathrm{Re}-\mathrm{C}_{\text {acyl }}$ bond of trans-2a with PhCl_{2} and of cis / trans-2b with Br_{2} offers a convenient way to the rhenium(III) dilhalo complexes cis $/$ trans $-\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{Cl}_{2}$ (cis $/$ trans-7a) and cis $/$ trans- $\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{Br}_{2}$ (cis/ trans-7b) respectively. Reduction of cis/trans-7a with sodium/amalgam gives in the presence of RNC, the rheniun(I) isonitrile the rhenium(III) isonitrile complexes [trans- $\left.\mathrm{CPRe}(\mathrm{CO})_{2}(\mathrm{CNR}) \mathrm{Br}\right] \mathrm{Br}\left(11: \mathrm{R}=\mathrm{E} ; 12: \mathrm{R}-{ }^{\prime} \mathrm{Pr} ; 13: \mathrm{R}={ }^{\prime} \mathrm{Bu}\right)$. The crystal structure of the acyl complex trans-2b and the carbonyl complex $\left[\mathrm{CP}_{2}{ }^{2} \mathrm{Re}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{Br})\right]\left(\mathrm{Re}_{2}(\mu-\mathrm{Br})_{3}(\mathrm{CO})_{6}\right]$ (14) are described, complex 14 being formed by the thermal decomposition of cis/trans-6b.

Renuerds: Isonitrile complexes; Rhenium: Alkyl complexes,

1. Introduction

Transition metal acyl complexes are a ubiquitous class of compounds, which have been studied extensively due to their involvement in many catalytic and stoichiometric reactions [1]. In this context several rhenium(I) acyl complexes have been prepared using three main methods. The first involves acylation of a suitable rhenate complex, as shown by the reactions of $\mathrm{Na}\left[\mathrm{Re}(\mathrm{CO})_{5}\right]$ with various acid halides [2]. The second involves addition of a nucleophile at the carbon atom of coordinated carbon monoxide. Illustrative examples of this approach are the reactions of the cationic carbonyl complexes $\left[\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~L}_{2}\right]^{+}\left(\mathrm{L}=\mathrm{CO}, \mathrm{PEt}_{3}, \mathrm{PPh}_{3} ; \mathrm{L}_{2}=\right.$ 2.2'-bipy, ophen) with alkoxides [3] and alkylamines [4],

[^0]or the reactions of the neutral carbonyl complexes $\operatorname{Re}(\mathrm{CO})_{5=n} \mathrm{~L}_{n} \mathrm{X}\left(n=0,2 ; \mathrm{L}=\mathrm{PR}_{3}, \mathrm{P}(\mathrm{OR})_{3} ; \mathrm{X}=\mathrm{Cl}\right.$, $\mathrm{Br}, \mathrm{I}, \mathrm{Me}, \mathrm{C}(\mathrm{O}) \mathrm{Me}, \mathrm{SnPh}_{3}$) [5], $\mathrm{CpRe}(\mathrm{CO})_{3}[6]$ and $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ [7] with amines and alkyllithium reagents. The third is based on the well-known CO migratory insertion reaction of alkyl complexes [8]. In comparison, mononuclear rhenium(III) acyl complexes are rare [9]. Seeking for an efficient synthetic approach to this class of compounds, we have recently prepared the technetium(I) and rhenium(I) acyl complexes $\mathrm{Li}\left[\mathrm{Cp}^{\circ}\right.$ -$\left.\mathrm{M}(\mathrm{CO})_{2}\left(\eta^{1}-\mathrm{PhCO}\right)\right]\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ and have shown these compounds to be useful starting materials for the synthesis of carbene, carbyne and ylide complexes [10]. In continuation of this work on Group VII transition metal complexes bearing metal-carbon multiple bonds, we describe below the oxidation reactions of the rhenium(I) acyl complexes $\operatorname{Li[}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right) \operatorname{Re}(\mathrm{CO})_{2}\left(\eta^{1}-\right.$ $\mathrm{PhCO})$ ($1: \mathrm{R}=\mathrm{H} ; 5: \mathrm{R}=\mathrm{Me}$) with halogens and the stepwise transformation of the resulting rhenium(III) acyl complexes to rhenium(I) and rhenium(III) isonitrile complexes.

2. Results and discussion

Oxidation of $\mathrm{Li}\left[\mathrm{CpRe}(\mathrm{CO})_{2}\left(\eta^{\prime}-\mathrm{PhCO}\right)\right]$ (1) with one equivalent of PhICl_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$ gives the $\mathrm{Re}^{\text {III }}$ acyl complex trans-CpRe(CO) $\left.\mathbf{2}^{(} \eta^{1}-\mathrm{PhCO}\right) \mathrm{Cl}$ (trans-2a) (Eq. (1)). Formation of a minor product in this reaction is indicated by the IR spectra of the reaction solutions, which show besides the two $\nu(\mathrm{CO})$ absorptions of the acyl complex trans-2a at 2046 and $1975 \mathrm{~cm}^{-1}$. two other $\nu(\mathrm{CO})$ absorptions of much lower intensity at 1970 and $1888 \mathrm{~cm}^{-1}$. The minor product was easily separated from the acyl complex trans-2a by column chromatography on silica at $-20^{\circ} \mathrm{C}$ and was isolated in 15% yield as a light red, thermally stable microcrystalline solid, which is soluble in all common organic solvents. It was identified by IR and NMR spectroscopy, mass spectrometry and elemental analysis to be the diphenylcarbene complex 3 (Eq. (1)). The acyl complex trans-2a was isolated as an orange solid in 62% yield. It is soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$, but sparingly soluble in pentane and decomposes in solution at room temperature.

The unprecedented "oxide-aryl" replacement reaction leading from 1 to 3 offers a direct route from an acyl complex to a diarylcarbene complex [11]. Two other routes are known to give compounds analogous to 3. The first involves the addition of a nucleophile to the carbyne carbon of a cationic carbyne complex. This is exemplified by the reactions of the rhenium complex $\left[\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Re}=\mathrm{CPh}\right] \mathrm{BCl}_{4}$ with LiMe and $\mathrm{Et}_{2} \mathrm{AlH}$ to afford the carbene complexes $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Re}=\mathrm{C}(\mathrm{R}) \mathrm{Ph}(\mathrm{R}=$ Me, H) [12], and by the reaction of the manganese carbyne complex $\left[\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Mnw} \mathrm{CMe}^{2} \mathrm{BCl}_{4}\right.$ with LiMe to give the carbene complex $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Mn}=\mathrm{CMe}_{2}$ [13]. The second includes the carbene transfer reaction of $\mathrm{CpMn}(\mathrm{CO})_{2} \mathrm{THF}$ with $\mathrm{Ph}_{2} \mathrm{CN}_{2}$ [14].

Oxidation of 1 with one equivalent of bromine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$ leads to the rhenium(III) acyl complex $\mathrm{CpRe}(\mathrm{CO})_{2}\left(\eta^{\prime}-\mathrm{PhCO}\right) \mathrm{Br}(2 \mathrm{~b})$, which was obtained as a mixture of the cis and the trans isomer and isolated after purification by column chromatography on silica at $-20^{\circ} \mathrm{C}$ as a yellow solid in 75% yield (Scheme 1). It is soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$, but sparingly soluble in pentane, and decomposes in solution at room temperature. IR spectra of the reaction solutions and of the isolated yellow solid indicate that the trans stereoisomer (trans-2h) is predominantly formed in this reaction. The ratio trans-2b/cis-2b was determined from the relative intensity of the cyclopentadienyl proton resonances in the 'H NMR spectrum of the isolated solid, and was found to be $9: 1$. Alternaively, the rhenium(III) acyl complexes cis-2b and trans-2b can be obtained by oxidation of the Fischer-type ethoxycarbene complex $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Re}=\mathrm{C}(\mathrm{OEt}) \mathrm{Ph}(4)$ with one equivalent of bromine (Scheme 1). Again the trans stereoisomer (trans-2b) is the main product of this unprecedented oxidative carbene-acyl transformation reaction. Most oxidation reactions of Fischer-type carbene complexes proceed with a cleavage of the metal-carbon double bond [15].

Treatment of $\mathrm{Li}\left[\mathrm{Cp}{ }^{*} \operatorname{Re}(\mathrm{CO})_{2}\left(\eta^{1}-\mathrm{PhCO}\right)\right]$ (5) with one equivalent of PhCl_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$ affords a mixture of the rhenium(III) acyl complexes cis- and trans- $\mathrm{Cp} \cdot \mathrm{Re}(\mathrm{CO})_{2}\left(\eta^{\prime}-\mathrm{PhCO}\right) \mathrm{Cl}($ (cis $/$ trans-6a) (Eq. (2)). Formation of a rhenium diphenylcarbene byproduct was not observed in this reaction, in contrast to the oxidation reaction of 1 with PhICl_{2} (Eq. (1)). The mixture of stereoisomers cis-6a and irans-6a was isolated as an orange-yellow solid in 77% yield after evaporation of the solvent and extraction of the residue with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ (1:5). Integration of the pentamethylcyclopentadienyl proton signals in the ${ }^{1}$ H NMR spectrum of the isolated solid gave a trans-6a/cis-6a
ratio of $2.1: 1$. Alternatively, the reaction mixture can be purified by column chromatography on neutral alumina at $-20^{\circ} \mathrm{C}$. Using an $\mathrm{Et}_{2} \mathrm{O} /$ pentane ($1: 1$) mixture as eluent, the two stereoisomers can be separated, the less adsorbed and more soluble trans isomer being eluted first. Thereby the pure stereoisomers were isolated as orange-yellow, microcrystalline solids, which are soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$, but sparingly soluble in pentane, and decompose slowly in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature without any sign of thermal isomerization.

(2)

In a similar reaction to that giving cis/trans-6a, oxidation of 5 with one equivalent of bromine or iodine affords selectively the rhenium(III) acyl complexes cis $/$ trans $-\mathrm{Cp} \cdot \operatorname{Re}(\mathrm{CO})_{2}\left(\eta^{\prime}-\mathrm{PhCO}\right) \mathrm{Br}$ (cis/trans-6b) and cis / trans-Cp ${ }^{2} \operatorname{Re}(\mathbf{C O})_{2}\left(\eta^{\prime}-\mathrm{PhCO}\right) \mathrm{I}($ cis $/$ trans- 6 cc) respectively (Eq. (3)). Again IR spectra of the reaction solutions and the isolated solids indicate that the trans stereoisomers trans-6b and trans-6c are predominantly formed in these reactions. Purification of the reaction solution by low-temperature column chromatography on silica gives the mixture of isomers cis/trans-fib and cis / trams-fe as orange-yellow, microcrystalline solids in 79 and 74% yields respectively. Integration of the pentamethylcyclopentadienyl proton resonances in the H NMR spectrum of the obtained iodo isomers in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature [trans-6e: $\delta\left(\mathrm{Cp}{ }^{*}\right)=1.72$; cis-6e: $\delta\left(\mathrm{Cp}{ }^{*}\right)$) 1.69] gave a trans-6c/cis-6e ratio of 2.8:1. The iodo complexes cis-6c and trans-6c were found to be stable in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature over at least 12 h . However, they decompose when heated in a sealed capillary in vacuo at $82^{\circ} \mathrm{C}$.

In an attempt to determine the structure of the thermal decomposition products of the rhenium(III) acyl complexes 2a, $\mathbf{2 b}$ and $\mathbf{6 a - 6 c}$, a saturated orange-yellow solution of the isomers cis- $6 \mathbf{b}$ and trans- $\mathbf{6 b}$ in $\mathrm{Et}_{2} \mathrm{O}$ was allowed to crystallize at room temperature by slow evaporation of the solvent. Suitable green crystals for a single-crystal X-ray diffraction study separated from the resulting green solution and were shown to be the salt 14 of the homodinuclear complex cation $\left[\mathrm{Cp}_{2}{ }^{*} \mathrm{Re}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{Br})\right]^{+}$and the homodinuclear complex anion $\left[\mathrm{Re}_{2}(\mu-\mathrm{Br})_{3}(\mathrm{CO})_{6}\right]^{-}$(see crystal structure of 14).

Treatment of 1 with three equivalents of PhICl_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ and subsequent warming of the reaction mixture to room temperature gives, after oxidative cleavage of the $\mathrm{Re}-\mathrm{C}_{\text {aryl }}$ bond, the rhenium(III) dichloro complexes cis-and irans- $\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{Cl}_{2}$ (cis/ trans-7a) (Scheme 2). IR monitoring of this reaction reveals the intermediate formation of the thenium(III) acyl complex trans-2a according to Eq. (1). This reacts subsequently with additional PhICl_{2} to give cis / trans7a. In the latter reaction benzoyl chloride is liberated, as evidenced by its two characteristic IR absorptions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 1775 and $1732 \mathrm{~cm}^{-1}$ [16]. The stereoisomers cis-7a and trans-7a were separated by column chromatography on silica at $-15^{\circ} \mathrm{C}$ and isolated as red (trans-7a) and red-brown (cis-7a) microcrystalline solids in 30 and 35% yields respectively.
The oxidation of 1 with PhCl_{2} to give cis / trans$\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{Cl}_{2}$ (cis / trans-7a), combined with the quantitative transformation of $\mathrm{CpRe}(\mathrm{CO})_{3}$ with LiPh to 1, provides an efficient two-step synthesis of the dichloro complexes starting from $\mathrm{CpRe}(\mathrm{CO})_{3}$ (Scheme 2). This synthetic procedure is more convenient than the previously reported three-step synthesis of cis / trans$\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{Cl}_{2}$ from $\mathrm{CpRe}(\mathrm{CO})_{3}$, involving in the key
step the oxidation of $\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{~N}_{2}$ by HCl [17]. A direct oxidation of $\mathrm{CpRe}(\mathrm{CO})_{3}$ to cis / trans$\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{Cl}_{2}$ has not succeeded so far, the reactions of $\mathrm{CpRe}(\mathrm{CO})_{3}$ with Cl_{2} and SbCl_{5} affording only the salts $\left[\mathrm{CpRe}(\mathrm{CO}){ }_{3} \mathrm{Cl}\right] \mathrm{Cl}$ and $\left[\mathrm{CpRe}(\mathrm{CO})_{3} \mathrm{Cl}^{2} \mathrm{SbCl}_{6}\right.$ respectively [18].

In a similar reaction to that yielding cis/trans-7a, treatment of 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with slightly more than three equivalents of bromine gives a mixture of the rhenium(III) dibromo complexes cis- and trans$\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{Br}_{2}$ (cis/trans-7b) (Scheme 2). This was isolated after purification by column chromatography as a brown solid in 76\% yield. Again IR monitoring of this reaction revealed the intermediate formation of the rhenium(III) acyl complexes cis-2b and trans-2b according to Scheme 1. These then react with additional bromine to give cis/trans-7b. In the latter reaction benzoyl bromide is liberated, as evidenced by its characteristic IR $\nu(\mathrm{CO})$ absorption in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $1774 \mathrm{~cm}^{-1}$ [16]. An alternative method for the synthesis of cis / trans-CpRe(CO) ${ }_{2} \mathrm{Br}_{2}$ involves the direct bromination of $\mathrm{CpRe}(\mathrm{CO})_{3}$ with Br_{2} in trifluoroacetic acid [19].

The dihalo complexes were found to be very useful starting materials for the synthesis of rhenium(I) and rhenium(III) isonitrile complexes bearing a cyclopentadienyl ligand (Scheme 3). Thus, reductive dehalogena-

Scheme 3.
tion of cis /trans-7a with excess $\mathrm{Na} / \mathrm{Hg}$ in the presence of an alkyl isonitrile gives the rhenium(I) isonitrile complexes $\mathrm{CpRe}(\mathrm{CO})_{2}(\mathrm{CNR})$ (8: $\mathrm{R}=\mathrm{Et}$; 9: $\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}$; 10: $R={ }^{\prime} \mathrm{Bu}$) (Scheme 3). These were isolated in good yields as white, slightly air-sensitive solids, which are soluble in common organic solvents including paraffin hydrocarbons. The isonitrile complexes 9 and 10 have been obtained previously from the reaction of the

Table 1
$\nu(\mathrm{C} \equiv \mathrm{NR}), \nu(\mathrm{CO})$ and $\nu(\mathrm{C}=0)_{\text {aryl }}$ absorptions (cm^{-1}) of $1-13$; solvents: (a) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (b) $\mathrm{E}_{2} \mathrm{O}$, (c) n-pentane

Complex	$\boldsymbol{L C}=\mathrm{NR})$	$\square(\mathrm{CO}$	$\nu(\mathrm{C}-0)_{\text {ary }}$	Solvent
LilCpRe(CO) ${ }_{2}\left(\eta^{1}-\mathrm{Ph}\right.$ CO) $](1)$	-	$\begin{aligned} & 1918 \mathrm{~s}, 1908 \mathrm{~s} \\ & 1800 \mathrm{~s}, 1787 \mathrm{~s} \end{aligned}$	$=$	b
	-	2046 s. 1975 vs	1617 m	*
	$=$	2027 vs. 1955 s	- "	a
	$=$	2041 s. 1972 vs	1618 m	\square
$\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Re}=\mathrm{CPh}_{2}(\mathbf{3})$	$=$	1970 vs. 1888 vs	--	a
	-	1978 vs. 1907 vs	-	c
$\left.\mathrm{Cp}(\mathrm{CO})_{3} \mathrm{Re}=\mathrm{COOE}\right) \mathrm{Ph}(4)$	-	1951 vs. 1872 vs	-	a
		1963 vs. 1891 vs	-	c
$\left.\mathrm{LHCP} \mathrm{P} \mathrm{Re}(\mathrm{CO})_{2}\left(\eta^{\prime} \cdot \mathrm{PhCO}\right)\right](5)$	-	$\begin{aligned} & 1898 \mathrm{~s}, 1890 \mathrm{~s} \text {, } \\ & 1784 \mathrm{vs} \end{aligned}$	-	b
	-	2010 vs, 1935 s	1617 m	a
	-	2033 s .1955 vs	1606 m	a
 	-	2007 vs. 1935 s	1617 m	a
	\cdots	2030 s. 1954 vs	1609 m	a
	-	$2004 \mathrm{~s}, 1933 \mathrm{~s}$	1617 m	a
	-	2017 s, 1946 vs	1611 m	a
	-	2059 vs, 1984 s	-	a
trams-CpRe(CO) $)_{2} \mathrm{Cl}_{2}$ ((rams-7a)	-	2076 s, 2011 vs	-	a
	-	2054 vs. 1892 s	-	a
trams-CpRe(CO) ${ }_{2} \mathrm{Br}_{3}($ trams-7b) $\mathrm{CPRe}(\mathrm{CO})_{2}(\mathrm{CNEt})(8)$	-	2067 s. 2003 vs	-	a
CPRe(CO) ${ }_{2}$ (CNEO) (8)	2130 m .2106 m	1945 vs. 1891 vs	-	b
	2128 w, 2099 m	1952 vs. 1903 vs	-	c
CPReCO) ${ }_{3}\left(\mathrm{CN}^{\prime} \mathrm{Pr}\right)$ (9)	$2108 \mathrm{~m}, 2096 \mathrm{sh}$	1943 vs, 1892 vs	-	b
	2106 sh. 2092 m	$1950 \mathrm{vs}, 1904$ vs	-	c
Cprtcois ${ }^{(C N B u}$ (10)	2111 m, $2069 \mathrm{w}, \mathrm{br}$	1932 vs, 1874 vs	-	0
	2242 s	$1940 \mathrm{vs}, 1891$ vs $2090 \mathrm{~s}, 2035 \mathrm{vs}$	-	b
Tans $\left\{\left(\mathrm{CPR}(\mathrm{CO})_{2}\left(\mathrm{CN}{ }^{\prime} \operatorname{Pr}\right) \mathrm{Br} \mid \operatorname{Br}(12)\right.\right.$	2235 s	2089 s, 2035 vs		a
Prans- $\left.\mathrm{CPRRe}(\mathrm{CO})_{2}\left(\mathrm{CN}{ }^{\prime} \mathrm{Bu}\right) \mathrm{Br}\right] \mathrm{Br}$ (13)	2220 s	2088 s, 2034 vs	-	a

[^1]vinylidene complex $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Re}=\mathrm{C}=\mathrm{CH}_{2}$ with the carbodiimides $\mathrm{RN}=\mathrm{C}=\mathrm{NR}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr},{ }^{1} \mathrm{Bu}\right)$ [20].

Oxidation of the complexes 8-10 with one equivalent of bromine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-25^{\circ} \mathrm{C}$ yields selectively the rhenium(III) isonitrile complexes [trans-CpRe$\left.(\mathrm{CO})_{2}(\mathrm{CNR}) \mathrm{Br}\right] \mathrm{Br}\left(11: \mathrm{R}=\mathrm{Et} ; 12: \mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr} ; 13: \mathrm{R}=\right.$ ${ }^{\prime} \mathrm{Bu}$), which were isolated as yellow solids in 95-99\% yields (Scheme 3). These are soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, but insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and pentane, and decompose in solution at room temperature.

Analogous oxidation reactions to those of 8-10 have been reported previously for the pentamethylcyclopentadienyl Re^{1} complexes $\mathrm{Cp}{ }^{*} \operatorname{Re}(\mathrm{CO})_{2} \mathrm{~L}\left[\mathrm{~L}=\mathrm{PMe}_{3}\right.$, $\left.\mathrm{P}(\mathrm{OR})_{3}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph})\right][21]$.

3. Spectroscopic investigations

3.1. IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

The IR spectra of the complexes 1-13 show, in the region $2300-1500 \mathrm{~cm}^{-1}$, characteristic $\nu(C \equiv N R)$,
$\nu(\mathrm{CO})$, and $\nu(\mathrm{CO})_{\text {acyl }}$ absorptions of the coordinated isonitrile, carbonyl and acyl ligands respectively (Table 1). The number and relative intensity of the $\nu(\mathrm{CO})$ absorptions of the "four-legged piano-stool" complexes $2 \mathrm{a}, 2 \mathrm{~b}, 6 \mathrm{a}-7 \mathrm{~b}$ and $11-13$ indicate the number of isomers and the relative position of the carbonyl ligands in the coordination sphere. Thus, only two absorption bands are observed in the IR spectra of the complexes 2a and 11-13, the higher energy absorption of the symmetric $\boldsymbol{\nu (C O)}$ vibration being less intense than the lower energy absorption of the antisymmetric $\nu(\mathrm{CO})$ vibration [19b, c]. This indicates the presence of only the trans isomer. In comparison, four $v(\mathrm{CO})$ absorptions are found in the IR spectra of the complexes $\mathbf{2 b}$ and $\mathbf{6 a - 7 b}$, indicating the presence of a mixture of cis / trans isomers. As expected, the higher energy absorption of all cis isomers (cis-2b, cis-6a-cis-7b) is more intense than the lower energy $v(\mathrm{CO})$ absorption [19b, c]. The angle 2θ between the two CO ligands has been calculated for the complex trans-2b, using the relationship $I_{\mathrm{a}} / I_{\mathrm{s}}=\tan ^{2} \theta$, where I_{a} and I_{s} are the

Table 2
${ }^{1} H$ NMR data of the complexes trans- $2 \mathrm{a}-13$; relative intensities and multiplicities in parentheses, coupling constants in hertz

Complex	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC}$ $\mathrm{Mc}_{2} \mathrm{CHNC}$ $\mathrm{Me}_{3} \mathrm{CNC}$	$\mathrm{C}_{5} \mathrm{Me}_{5}$	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC} \\ & \mathrm{Me}_{2} \mathrm{CHNC} ; \end{aligned}$	$\mathrm{C}_{5} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	Solvent $T\left({ }^{\circ} \mathrm{C}\right)$
rrans. 2 a	-	-	-	5.67 (5, s)	$\begin{aligned} & 7.44(2, m)^{a}, 7.51(1, m)^{b} \\ & 7.71(2, m)^{c} \end{aligned}$	$\begin{gathered} \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ -30 \end{gathered}$
cis-2b	-	-	-	5.98 (5, s)	- ${ }^{\text {d }}$	$\begin{gathered} \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ -20 \end{gathered}$
mams-2b	-	-	-	5.67 (5. s)	$\begin{aligned} & 7.44(2, m))^{a} .7 .51(1, m)^{n} \\ & 7.69(2, m) \end{aligned}$	$\begin{aligned} & \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ & -20 \end{aligned}$
3	\cdots	-	-	5.42 (5, s)	$\begin{aligned} & 7.49(4, m)^{a}, 7.61(2, m)^{n} . \\ & 7.76(4, m) \end{aligned}$	$\underset{-20}{\mathrm{CD}_{2} \mathrm{Cl}_{2}}$
cis 6a	\cdots	1.99 (15.s)	-	" $=$	7.39-7.60 (5, m) "	$\begin{gathered} \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ -20 \end{gathered}$
trans-6a	-	1.94 (15.8)	-	$=$	7.39-7.60)(5,m) ${ }^{\text {d }}$	$\begin{gathered} \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ -30 \end{gathered}$
cis-6b	-	2.03 (15, s)	-	-	$7.30-7.61(5, m){ }^{\text {d }}$	$\begin{gathered} \mathrm{CD}_{2} \mathrm{Cl}_{2} \end{gathered}$
trans-6b	-	2.00 (15, s)	-	-	7.36-7.61 (5, m) ${ }^{\text {d }}$	$\underset{-20}{\mathrm{CD}_{2} \mathrm{Cl}_{2}}$
cin-6c	-	2.15 (15, s) ${ }^{\text {c }}$	-	-	7.34-7.61 (5, m) "	$\begin{aligned} & \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ & +20 \end{aligned}$
trans-6c	-	$2.15(15, \mathrm{~s})^{\text {e }}$	-	-	7.34-7.61 (5, m) ${ }^{\text {d }}$	$\begin{aligned} & \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ & +20 \end{aligned}$
8	$\begin{aligned} & 0.61(3, t) \\ & 3 J(H H)=7.2 \end{aligned}$	-	$\begin{aligned} & 2.77(2, q) \\ & 3(H H)=7.2 \end{aligned}$	4.68(5, s)	-	$\begin{aligned} & C_{0} D_{0} \\ & +20 \end{aligned}$
9	$\begin{aligned} & 0.78(6, d) \\ & { }^{3} J(H H)=6.5 \end{aligned}$	-	$\left.\begin{array}{l} 3.32(1, \text { sept }) \\ 3 \\ 3 \\ \hline \end{array} \mathrm{HH}\right)=6.5$	4.69 (5, s)	-	$\begin{gathered} C_{6} D_{6} \\ +20 \end{gathered}$
10	0.97 (9, s)	-	--	4.68 (5, s)	-	$\begin{aligned} & C_{6} D_{6} \\ & +20 \end{aligned}$
11	$\begin{aligned} & 1.50(3, t) \\ & { }^{3} J(H H)=7.2 \end{aligned}$	-	$\begin{aligned} & 4.52(2, q) \\ & 3(H H)=7.2 \end{aligned}$	6.42 (5, s)	-	$\begin{gathered} \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ -50 \end{gathered}$
12	$\begin{aligned} & 1.55(6, d) \\ & 3(H H)=6.6 \end{aligned}$	-	$\begin{aligned} & 5.13(1, \text { sept }) \\ & 3 J(H H)=0=6.6 \end{aligned}$	6.49 (5, s)	-	$\begin{aligned} & \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ & -30 \\ & \mathrm{CD}, \mathrm{Cl} \end{aligned}$
13	1.67 (9, s)	-	-	6.44 (5, s)	-	-40

[^2]intensities of the asymmetric and symmetric $\nu(\mathrm{CO})$ bands respectively［19b，c］．The obtained value of 109° is very close to that found in the crystal structure of trans－2b $\left[\mathrm{OC}-\mathrm{Re}-\mathrm{CO}=110.1(5)^{\circ}\right]$（see crystal struc－ ture of trans－2b）．

The $\nu(\mathrm{CO})$ absorptions of the acyl complexes trans－ 2a and trans－2b appear at lower wavenumbers than those of the dihalo complexes trans－7a and trans－7b respectively．This can be attributed to an enhancement of the elcetion density at the metal centre（stronger metal－carbonyl back－bonding），when the chloro or bromo ligand is replaced by the less electronegative benzoyl ligand（Table 1）．For the same reason，the $\nu(\mathrm{CO})$ absorptions of the Cp ＂－substituted acyl com－ plexes decrease in the series cis－ $6 \mathrm{a}>$ cis－ $6 \mathrm{~b}>$ cis－ 6 c and trans－6a $>$ trans－6b $>$ trans－ $6 c$ and appear at lower wavenumbers than those of the corresponding Cp －sub－ stituted acyl complexes（stronger electron releasing abil－ ity of the $\mathrm{Cp}{ }^{*}$ ligand）．The $\nu(\mathrm{C} \equiv \mathrm{NR})$ absorptions of the Re（III）isonitrile complexes $11-13$ appear at consid－ erably higher frequency than those of the uncoordinated alkyl isonitriles $\left[\nu(\mathrm{C}=\mathrm{NEt})=2160 \mathrm{~cm}^{-1}, v\left(\mathrm{C}_{\mathrm{m}} \mathrm{N}^{\prime} \mathrm{Pr}\right)\right.$ $=2149 \mathrm{~cm}^{-1}, v\left(\mathrm{C} \mathrm{N}^{1} \mathrm{Bu}\right)=2140 \mathrm{~cm}^{-1}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$ ． This indicates that the alkyl isonitrile acts only as a
σ－donor ligand towards the electron－poor rhenium cen－ tre in these compounds．In comparison，two $\boldsymbol{\nu}(\mathrm{C} \equiv \mathrm{NR})$ absorptions are observed in the IR spectra of the $\operatorname{Re}(I)$ isonitrile complexes 8－10 at lower frequency than those of the uncoordinated alkyl isonitriles，suggesting exten－ sive metal－isonitrile back－donation in these compounds．

All acyl complexes are distinguished by an absorp－ tion of medium intensity between 1600 and $1620 \mathrm{~cm}^{-1}$ ， which can be assigned to the $\nu(\mathrm{C}=0)$ absorption of the acyl ligand．This absorption appears in the same range as that of other neutral rhenium η^{\prime}－acyl complexes［ $2 a$ ， 2d－f］．

Finally，two $v(\mathrm{CO})$ absorptions of almost equal in－ tensity are observed in the IR spectra of the pseudo－oc－ tahedral complexes 3，4 and 8－10．These absorptions decrease in the series $3>4>8-10$ ，indicating the de－ creasing σ－donor $/ \pi$－acceptor ability of the ligand in the series diphenylcarbene $>$ alkoxy（phenyl）carbene $>$ alkyl isonitrile．

Further support for the structures assigned to the complexes is given by the ${ }^{1} \mathrm{H}$ NMR spectra（Table 2）． Thus，one singlet resonance is observed for the cy－ clopentadienyl protons of the complexes 2a and 11－13， ind：－ating the presence of only one isomer（trans iso－

Table 3
${ }^{19} \mathrm{C}$ NMR data of the complexes truns－2a－13：coupling constants in hertz

Complex	C，Me：	$\begin{aligned} & \hline \mathrm{CH}_{3} \mathrm{CH}, \mathrm{NC} \\ & \mathrm{Me}_{2} \mathrm{CHNC} \\ & \mathrm{Me}_{3} \mathrm{CNC} \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{1} \mathrm{CH} \mathrm{NAC}_{2} \\ & \mathrm{Me} e_{2} \mathrm{CHNC} \\ & \mathrm{Me}, \mathrm{CNC} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{5} \\ & \mathrm{C}_{3} \mathrm{Me} \end{aligned}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{CH}_{1} \mathrm{CH}_{2} \mathrm{NC}$ Me ${ }_{2} \mathrm{CHNC}$ Me，CNC	CO	$\begin{aligned} & \mathrm{PhCO} \\ & \operatorname{Re}=\mathrm{C} \end{aligned}$	Solvent $r\left({ }^{\circ} \mathrm{C}\right)$
rums．2a	＝	－		96.7	$\begin{aligned} & 138,5^{2} \cdot 128.6^{7} \\ & 132.0^{\circ} \cdot 158.9^{\circ} \end{aligned}$	$=$	197.9	314.7	$\underset{=3,30}{\mathrm{CD}_{3}}$
trams 26	$=$	－	－	90.1	$\begin{aligned} & 128.9^{\circ} \cdot 128.6^{\prime \prime} \\ & 132.0^{\circ} .152 .3^{\circ} \end{aligned}$	－	195.7	213.0	$\underset{-30}{\mathrm{CD}_{2}}$
3	$=$	\cdots	－	93.1	$\begin{aligned} & 128,3 \cdot 130,1^{n} \\ & 132.5 \div 104,5 \end{aligned}$	－	205.3	296.0	$\underset{-20}{\mathrm{CD}_{2} \mathrm{Cl}_{2}}$
dss6a	9.9	＝	\cdots	108． 1	$\begin{aligned} & 128.0^{9} \cdot 129,1^{\mathrm{B}} \\ & 131.4^{\mathrm{c}} .147 .9^{\mathrm{d}} \end{aligned}$	－	206．7． 208.2	227.8	$\begin{gathered} \mathrm{CD}_{2} \mathrm{Cl}_{3} \\ -20 \end{gathered}$
trams－6	9.9	－	$=$	105.6	$\begin{aligned} & 126.5^{\mathrm{a}}, 128.0^{\mathrm{b}} \\ & 130.8^{\mathrm{c}}, 155.0^{\mathrm{d}} \end{aligned}$	－	200.0	223.7	$\begin{aligned} & \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ & -20 \end{aligned}$
ds：6b	10.2	－	－	107.7	$\begin{aligned} & 128.1^{a} \cdot 129.3^{b} \\ & 1 . .5^{\circ} \cdot 149.1^{\circ} \end{aligned}$	－	205．3． 207.2	224.6	$\begin{aligned} & \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ & -10 \end{aligned}$
Hams－6b	10.0	－	－	105.2	$\begin{aligned} & 126.6^{\circ}, 128.0 \\ & 130.7{ }^{\circ}, 154.7^{\circ} \end{aligned}$	－	198.3	22.1	$\begin{gathered} \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ -10 \end{gathered}$
asbe	10.8	－	－	107.3	$\begin{aligned} & 128.1^{\circ} \cdot 130.0^{\circ} \\ & 131.60^{\circ} \cdot 153.3^{\circ} \end{aligned}$	－	203．0， 207.0	221.4	$\mathrm{CD}_{20} \mathrm{Cl}_{2}$
trans－fo	11.0	－	－	105.0	$\begin{aligned} & 126.99^{a}, 128.3^{\circ} \\ & 130.8{ }^{\circ}, 156.2^{0} \end{aligned}$	－	196.7	220.3	$\mathrm{CD}_{20} \mathrm{Cl}_{2}$
8	－	15.6	39.2	83.0	－	145.7	199.2	－	$\begin{aligned} & C_{6} D_{6} \\ & +20 \end{aligned}$
9	－	23.8	48.6	83.1	－	146.6	199.2	－	$\begin{aligned} & C_{6} D_{6} \\ & +20 \end{aligned}$
10	－	30.9	57.0	83.1	－	148.7	199.1	－	$\begin{aligned} & C_{6} D_{6} \\ & +20 \end{aligned}$
11	－	14.5	4.2	95.4	－	102.6	179.9	－	$\begin{aligned} & \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ & -50 \end{aligned}$
12	－	22.5	54.3	95.7	－	102.3	180.2	－	$\underset{-30}{\mathrm{CD}_{2} \mathrm{Cl}_{2}}$
13	－	30.1	63.5	96.5	－	103.7	180.2	－	$\begin{aligned} & \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ & -40 \end{aligned}$

[^3]mer). In comparison, the ${ }^{1} H$ NMR spectra of $2 b$ and 6a-7b display two cyclopentadienyl or pentamethylcyclopentadienyl proton resonances, indicating the presence of a mixture of cis / trans isomers.

The ${ }^{13} \mathrm{C}$ NMR spectra are also consistent with the proposed structures of the new compounds (Table 3). Thus, only one carbonyl carbon resonance is observed in the ${ }^{13} \mathrm{C}$ NMR spectra of the complexes 2 a and 11-13 indicating, in agreement with the IR spectra, a trans arrangement of the two carbonyl ligands in these compounds. In comparison, the ${ }^{13} \mathrm{C}$ NMR spectra of the complexes 6a-6c display three carbonyl carbon resonances, giving evidence of a mixture of cis / trans isomers. Both carbonyl carbon resonances of the cis isomer appear at lower field than the carbonyl carbon resonance of the corresponding trans isomer (Table 3). This trend is the same as that observed for Group VI transition metal carbonyl complexes, where a stronger metal-carbonyl back-bonding causes a deshielding of the carbonyl carbon nucleus [22]. For the same reason, the carbonyl carbon resonances of the Re^{1} isonitrile complexes 8-10 appear at lower field (δ 199.1-199.2) than those of the $\mathrm{Re}^{\text {III }}$ isonitrile complexes 11-13 (δ 179.9-180.2). Also, the metal-bound isonitrile carbon resonances of the Re^{1} complexes 8-10 ($\delta 145.7-148.7$) appear at lower field than those of the Re ${ }^{\text {III }}$ complexes 11-13 (δ 102.3-103.7), because of the stronger metalisonitrile back-bonding in the former compounds. All rhenium(III) η^{\prime}-acyl complexes are distinguished by an acyl carbon resonance at δ 213.0-227.8, which appears at higher field than those of pentacarbonylrhenium(I) η^{\prime}-acyl complexes [2f, 23].

4. Crystal structures of trans-2b and 14

The structure of the acyl complex trans-2b was determined by a single-crystal X-ray diffraction study. A platon plot of the structure of trans-2b is given in Fig. 1. Selected bond lengths and angles are listed in Table 4. The coordination geometry around the rhenium

Fig. 1. Crystal structure of the acyl complex trans-2b (plation plot). Hydrogen atoms are omitted for clarity.
atom is typical for four-legged piano-stool complexes of the type CpML_{4} [24], and can be described as square pyramidal with the cyclopentadienyl ligand at the apex. A trans-arrangement of the acyl and the bromo ligand is observed. The basal plane of the pyramid, defined by the atoms $\mathrm{Br}, \mathrm{Cl}, \mathrm{C} 2$ and C 3 , is essentially parallel to the cyclopentadienyl ring plane, the dihedral angles between the best planes being 4.7°. The $\mathrm{Re}-\mathrm{CP}_{\text {cermer }}$ distance ($1.916 \AA$) is slightly shorter than that of truns $\mathrm{CpRe}(\mathrm{CO})_{2}\left(\eta^{\prime}-\mathrm{MeCO}\right) \mathrm{Me}\left[d\left(\operatorname{Re}-\mathrm{Cp}_{\text {crimer }}\right)=1.948 \AA \AA\right.$ [9b]. The $\mathrm{Re}-\mathrm{C}_{\text {curtomy }}$ bond lengths $[\mathrm{Rc}-\mathrm{Cl}=1.94(2)$ $\AA: \operatorname{Re}-C 2=1.944(12) \AA$]are close to those of other thenium(III) carbonyl complexes [9b,17b], and the Re$C_{\text {ary }}$ bond length $[\operatorname{Re} \cdots 3=2.212(11) ~ \AA]$ similar to that of the rhenium(III) acyl complex trans- $\mathrm{CpRe}(\mathrm{CO})_{2}\left(\eta^{\prime}-\right.$ $\mathrm{MeCO}) \mathrm{Me}\left[d\left(\operatorname{Re}-\mathrm{C}_{\text {wyy }}\right)=2.192(4) \AA\right][\varphi \mathrm{b}]$. A comparison of the angles around the sp² -hybridized acyl carbon atom excludes any interaction of the acyl oxygen atom with the rhenium centre, as predicted on the basis of electron counting formalisms.

Table 4
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with estimated standard deviations ion trans.-2b ${ }^{\text {a }}$

$\mathrm{Re}-\mathrm{C}(1)$	$1.94(2)$	$\mathrm{C}(1)-\mathrm{Re}-\mathrm{Br}$	$77.9(3)$
$\mathrm{Re}-\mathrm{C}(2)$	$1.944(12)$	$\mathrm{C}(2)-\mathrm{Re}-\mathrm{Br}$	$81.2(3)$
$\mathrm{Re}-\mathrm{C}(3)$	2.212(11)	$\mathrm{C}(3)-\mathrm{Re}-\mathrm{Br}$	138.6 (3)
$\mathrm{Re}-\mathrm{Br}$	$2.6019(14)$	$\mathrm{C}(1)-\mathrm{Re}-\mathrm{C}(2)$	110.1(5)
$\mathrm{Re}-\mathrm{C}(10)$	2.238(11)	$\mathrm{C}(1)-\mathrm{Re}-\mathrm{C}(3)$	79.5(5)
$\mathrm{Re}-\mathrm{C}(11)$	$2.315(11)$	$\mathrm{C}(2)-\mathrm{Re}-\mathrm{C}(3)$	74.6(5)
$\mathrm{Re}-\mathrm{C}(12)$	2.273(13)	$\mathrm{Re}-\mathrm{C}(3)-\mathrm{O}(3)$	120.5(9)
$\mathrm{Re}-\mathrm{C}(13)$	2.252(13)	$\mathrm{Re}-\mathrm{C}(3)-\mathrm{C}(4)$	121.9(8)
$\mathrm{Re}-\mathrm{C}(14)$	2.212(12)	$\mathrm{O}(3) \mathrm{C}(3)-\mathrm{C}(4)$	117.6410)
$\mathrm{Re}-\mathrm{cp}$	1.916	cp- $\mathrm{Re}-\mathrm{Br}$	111.6
C(3)-O(3)	1.22(2)	cp-Re-C(3)	109.8

[^4]

Fig. 2. Crystal structure of the cation $\left[\mathrm{Cp}_{2} \mathrm{Re}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{Br})\right]^{+}$in 14 (platon plot). Hydrogen atoms are omitted for clarity.

The structure of 14 was also determined by a singlecrystal X-ray diffraction study. A platon plot of the cation in 14 is given in Fig. 2, that of the anion in Fig. 3. Selected bond lengths and angles are listed in Table 5. The cation in 14 consists of two $\mathrm{Cp} \cdot \operatorname{Re}(\mathrm{CO})_{2}$ fragments, which are linked together by an $\mathrm{Re}-\mathrm{Re}$ single bond and a bromo ligand forming a symmetric bridge between the two formally divalent rhenium centres. The two $\mathrm{Cp} \cdot \operatorname{Re}(\mathrm{CO})_{2}$ fragments are trans arranged with respect to the plane defined by the bromo and the two rhenium atoms. The Re-Re distance of the cation in 14 [2.9927(14) A] is similar to those observed for other dinuclear rhenium carbonyl complexes bearing an Re-

Fig. 3. Crystal structure of the anion $\left[\operatorname{Re}_{2}(\mu-\mathrm{Br})_{3}(\mathrm{CO})_{6}\right]^{-}$in 14 (platon plot).

Re single bond, such as $\mathrm{Re}_{2}(\mathrm{CO})_{10}[d(\mathrm{Re}-\mathrm{Re})=$ $3.0413(11) \AA$] [25] and $\mathrm{Cp}_{2} \mathrm{Re}_{2}(\mathrm{CO})_{5}[d(\mathrm{Re}-\mathrm{Re})=$ $2.957(1) \AA$] [26]. As expected this distance is considerably shorter than the $\operatorname{Re}-\operatorname{Re}$ distance in the anion of 14 $[\operatorname{Re}(1) \ldots \operatorname{Re}(2)=3.475(2) \AA]$, where any bonding interaction between the two rhenium centres can be excluded on the basis of electron counting formalisms. The $\mathrm{Re}-\mathrm{Br}$ bond lengths of the cation [2.515(2) and $2.517(2) \AA$] are shorter than those of bromo-bridged rhenium(I) carbonyl complexes, such as $\mathrm{Re}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{6^{-}}$ $(\mathrm{THF})_{2}\left[d(\mathrm{Re}-\mathrm{Br})_{\mathrm{av}}=2.643 \AA\right]$ [27], $\mathrm{Re}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{6}{ }^{-}$ $\left(\mathrm{P}_{2} \mathrm{Ph}_{4}\right)\left[d(\mathrm{Re}-\mathrm{Br})=2.649 \AA\right.$ [[28], or $\mathrm{Re}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{6}{ }^{-}$ $\left(\mathrm{Se}_{2} \mathrm{Ph}_{2}\right)[d(\mathrm{Re}-\mathrm{Br})=2.656 \mathrm{~A}]$ [29]. This may be ascribed to the difference in the covalence radii of a rhenium(II) and a rhenium(I) atom. The structure of the

Table 5
Selected bond lengths (A) and bond angles (${ }^{\circ}$) with estimated standard deviations for 14°

Cution in 14			
$\operatorname{Re}(3)=\operatorname{Re}(4)$	$2.9927(14)$	$\operatorname{Re}(3)=\operatorname{Re}(4)-\operatorname{Br}(4)$	53.48(4)
$\operatorname{Re}(3)-\mathrm{Br}(4)$	$2.515(2)$	$\operatorname{Re}(4)-\operatorname{Re}(3)-\operatorname{Br}(4)$	53.53(4)
$\operatorname{Re}(4)-\mathrm{Br}(4)$	$2.517(2)$	$\mathrm{Br}(4)-\mathrm{Re}(3)-\mathrm{C}(12)$	123.8(3)
$\operatorname{Re}(3)=C(12)$	1.923(10)	$\mathrm{Br}(4)-\mathrm{Re}(3)=\mathrm{C}(13)$	86.5(3)
$\operatorname{Re}(3)=C(13)$	$1.912(11)$	$\operatorname{Re}(4)-\operatorname{Re}(3)-\mathrm{C}(12)$	77.7(3)
$\operatorname{Re}(4)-\mathrm{C}(14)$	$1.916(11)$	$\operatorname{Re}(4)-\operatorname{Re}(3)-\mathrm{C}(13)$	108.7(3)
$\mathrm{Re}(4)=\mathrm{C}(15)$	$1.925(12)$	$\operatorname{Br}(4)-\operatorname{Re}(4)-C(14)$	122.5(3)
$\operatorname{Re}(3)=c p^{\circ}(1)$	1.958	$\mathrm{Br}(4)-\mathrm{Re}(4)-\mathrm{C}(15)$	86.8(4)
$\operatorname{Re}(4)=$ CP ${ }^{\circ}(2)$	1,963	$\operatorname{Re}(3)-\operatorname{Re}(4)-\mathrm{C}(14)$	77.6(3)
$\operatorname{Re}(3)-\operatorname{Br}(4)-\operatorname{Re}(4)$	72.99(5)	$\operatorname{Re}(4)=\operatorname{Re}(3)-\mathrm{C}(15)$	$109.5(3)$
Aniom in 14			
$\operatorname{Re}(1)-\mathrm{Br}(1)$	2.648(2)	$\mathrm{Br}(1)-\operatorname{Re}(1)-\mathrm{Br}(2)$	80.19(6)
$\mathrm{Re}(1)-\mathrm{Br}(2)$	2.650(2)	$\operatorname{Br}(1)-\mathrm{Re}(1)-\mathrm{Br}(3)$	82.01(5)
$\operatorname{Re}(1)-\operatorname{Br}(3)$	$2.643(2)$	$\operatorname{Br}(2)-\operatorname{Re}(1)-\mathrm{Br}(3)$	82.69(5)
$\operatorname{Re}(2)-\mathrm{Br}(1)$	2.656(2)	$\mathrm{Br}(1)-\mathrm{Re}(1)-\mathrm{C}(20)$	174.4(3)
$\mathrm{Re}(2)=\mathrm{Br}(2)$	$2.645(2)$	$\operatorname{Br}(2)-\mathrm{Re}(1)-\mathrm{C}(22)$	174.2(3)
$\operatorname{Re}(2)-\mathrm{Br}(3)$	2.645(2)	$\mathrm{Br}(3)-\operatorname{Re}(1)-\mathrm{C}(19)$	176.2(3)
$\operatorname{Re}(1)-C(19)$	1.864 (10)	$\operatorname{Re}(1)-\operatorname{Br}(1)-\operatorname{Re}(2)$	81.87(5)
$\mathrm{Re}(1) \mathrm{Cl} 20)$	1.896(10)	$\operatorname{Re}(1)-\operatorname{Br}(2)-\operatorname{Re}(2)$	82.03(5)
Re(1)-C(22)	1.883(10)	$\operatorname{Re}(1)-\mathrm{Br}(3)-\mathrm{Re}(2)$	82.16(5)
Re(2)-C(16)	1.898(10)	$\mathrm{Br}(1)-\operatorname{Re}(2)-\mathrm{C}(18)$	173.3(3)
$\mathrm{Re}(2) \mathrm{C}(17)$	$1.912(12)$	$\operatorname{Br}(2)=\operatorname{Re}(2)-C(17)$	173.6(3)
$\mathrm{Re}(2)=\mathrm{C}(18)$	1.876(10)	$\operatorname{Br}(3)-\operatorname{Re}(2)-\mathrm{C}(16)$	176.5(3)

[^5]anion in 14 has been determined previously as its $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right) \mathrm{Re}(\mathrm{CO})_{3}\right]$ salt [30] and is therefore not discussed here.

5. Experimental

Standard Schlenk procedures were used for all syntheses and sample manipulations. The solvents were dried by standard methods (n-pentane over $\mathrm{CaH}_{2}, \mathrm{Et}_{2} \mathrm{O}$, THF and toluene over Na /benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{Na} / \mathrm{Pb}$ alloy), distilled under nitrogen and stored over $4 \AA$ molecular sieves prior to use. All column chromatography was carried out in a thermostatted column of 20 cm length and 2.0 cm diameter. The stationary phase was silica (Merck, 0.063-0.2 mm) which was degassesd, dried in vacuo at room temperature and saturated with nitrogen.

Elemental analyses were performed by the Microanalytical Laboratory of the Humboldt-Universität zu Berlin. IR spectra were recorded on a Bruker IFS-55 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR spectra were recorded on a Bruker AM-300 spectrometer in dry deoxygenated methylene- d_{2}-chloride or benzene- d_{6}. Chemical shifts were referenced to residual solvent signals (methylene- d_{2}-chloride, $\delta_{\mathrm{H}} 5.32$ and $\delta_{\mathrm{C}} 53.8$ ppm; benzene $-d_{6}, \delta_{H} 7.15$ and $\delta_{\mathrm{c}} 128.0$). Mass spectra were obtained with a HP 5995A spectrometer; m / z values are given relative to the ${ }^{187} \mathrm{Re},{ }^{35} \mathrm{Cl}$ and ${ }^{79} \mathrm{Br}$ isotopes.

The acyl complexes 1 and 5 were prepared from $\mathrm{CpRe}(\mathrm{CO})_{3}$ and $\mathrm{Cp}{ }^{\circ} \mathrm{Re}(\mathrm{CO})_{3}$ respectively, following the procedures described previously [6,10]. $\mathrm{CpRe}(\mathrm{CO})_{2}=\mathrm{C}(\mathrm{OEt}) \mathrm{Ph}$ was obtained from 1 by reaction with $\left[\mathrm{Et}_{3} \mathrm{O}\right] \mathrm{BF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{PhICl}_{2}$, ethyl isonitrile, isopropyl isonitrile, and tert-butyl isonitrile were pre pared according to published procedures [31,32]. Ele mentary bromine was distilled and stored under nitrogen.

5.1. trans. CpRelCO$)_{2}\left(\eta^{\prime} \cdot \mathrm{PhCOlCl}\right.$ (trans-2a) and $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Re}=\mathrm{CPh} h_{2}$ (3)

210 mg (0.76 mmol) of freshly prepared PhICl_{2} was added at $-40^{\circ} \mathrm{C}$ in a suspension of 320 mg (0.76 mmol) of $\mathbf{1}$ in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture wis ; then allowed to warm to $-30^{\circ} \mathrm{C}$ and stirred for 2 h at this temperature. The resulting brown suspension was evaporated to dryness at $-20^{\circ} \mathrm{C}$ and the residue was purified by column chromatography on silica at $-20^{\circ} \mathrm{C}$. Elution with $\mathrm{Et}_{2} \mathrm{O}$ /pentane ($1: 2$) afforded first an orange band, from which complex 3 was obtained as a light red, microcrystalline solid after removal of the solvent in vacuo and crystallization of the residue from pentane. Yield: 55 mg (15\%). Anal. Found: C, 50.30; H, 3.00. $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Fe}$ (473.55) Calc.: C, $50.73 ; \mathrm{H}, 3.19 \%$. El-MS (70 eV): $\mathrm{m} / \mathrm{z} 474\left([\mathrm{M}]^{+}\right), 446$ ($[\mathrm{M}-\mathrm{CO}]^{+}$), 418 ($[\mathrm{M}-$ $2 \mathrm{CO}^{+}$).

Further elution with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{n}$-pentane (2:1) gave a yellow fraction, which was concentrated in vacuo at $-20^{\circ} \mathrm{C}$ and treated with cold pentane ($-70^{\circ} \mathrm{C}$) to bring about complete precipitation of the complex trans-2a Orange solid. Yield: 210 mg (62%). Anal. Found: C 37.23; $\mathrm{H}, 2.10 ; \mathrm{Cl}, 7.66 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClO}_{3} \mathrm{Re}$ (447.89) Calc.: C, 37.54; H, 2.25; Cl, 7.92\%. EI-MS (70 eV): $m / z 412$ $\left([\mathrm{M}-\mathrm{HCl}]^{+}\right), 384$ ($\left.\mathrm{M}^{2} \mathrm{HCl}-\mathrm{CO}\right]^{+}$), 356 ($[\mathrm{M}-\mathrm{HCl}-$ $2 \mathrm{CO}]^{+}$), $336\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right]^{+}\right), 328\left([\mathrm{M}-\mathrm{HCl}-3 \mathrm{CO}]^{+}\right)$ $308\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}-\mathrm{CO}\right]^{+}\right), 280\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}-2 \mathrm{CO}\right]^{+}\right)$, 252 ($\left.\mathrm{M}_{\mathrm{M}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}-3 \mathrm{CO}\right]^{+}$).

5.2. cis / trans- $\mathrm{CpRe}(\mathrm{CO})_{2}{ }^{2} \eta^{\prime}-\mathrm{PhCO} / \mathrm{Br}$ (cis /trans-2b) from 1 and Br_{2}

A suspension of 820 mg (1.96 mmol) of $\mathbf{1}$ in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $-78^{\circ} \mathrm{C}$ with a solution of 0.1 $\mathrm{ml}(1.94 \mathrm{mmol})$ of Br_{2} in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was allowed to warm to $-30^{\circ} \mathrm{C}$ and stirred for 2 h . The solvent was then removed in vacuo at $-30^{\circ} \mathrm{C}$ and the residue purified by column chromatography on silica at $-20^{\circ} \mathrm{C}$. Elution with $\mathrm{Et}_{2} \mathrm{O}$ afforded a yellow fraction, which was concentrated in vacuo and treated with cold pentane $\left(-78^{\circ} \mathrm{C}\right)$ to bring about precipitation of cis / trans-2b as a yellow solid. Yield: 720 mg (75\%). Anal. Found: C, 33.90; H, 2.10. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrO}_{3} \mathrm{Re}$ (492.34) Calc.: C, 34.15 ; H, 2.05%. EI-MS (70 eV): $m / z 412\left([\mathrm{M}-\mathrm{HBr}]^{+}\right), 384$ ($\left.\left.\mathrm{M}-\mathrm{HBr}-\mathrm{CO}\right]^{+}\right), 356$ ($[\mathrm{M}-\mathrm{HBr}-2 \mathrm{CO}]^{+}$), 328 ($[\mathrm{M}-\mathrm{HBr}-3 \mathrm{CO}]^{+}$).

5.3. cis / trans- $\mathrm{CpRe}(\mathrm{CO})_{2} / \eta^{\prime} \cdot \mathrm{PhCO} \operatorname{Br}$ (cis / trans $2 \mathrm{2b}$) from $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Re}=\mathrm{C}(\mathrm{OE}) \mathrm{Ph}(4)$ and Br_{2}

A solution of $220 \mathrm{mg}(0.50 \mathrm{mmol})$ of 4 in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $-78^{\circ} \mathrm{C}$ with a solution of 0.026 $\mathrm{ml}(0.50 \mathrm{mmol})$ of Br_{2} in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 2 h at $0^{\circ} \mathrm{C}$. After removal of the solvent at $-10^{\circ} \mathrm{C}$. the residue was purified by column chromatography on silica at $-20^{\circ} \mathrm{C}$. Some unreacted starting material was first washed away with pentane. The mixture of isomers cis / trans- 2 b was then eluted with $\mathrm{Et}_{2} \mathrm{O}$ and isolated as a yellow solid. Yield: $150 \mathrm{mg}(61 \%)$. The product was characterized by IR and 'H NMR spectroscopy.

5.4. cis/trans-Cp* $\mathrm{Re}(\mathrm{CO})_{2} / \eta^{\prime} \cdot \mathrm{PhCOlCl}$ (cis / trans6a)

A suspension of 380 mg (0.78 mmol) of 5 in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $-78^{\circ} \mathrm{C}$ with 215 mg (0.78 mmol) of freshly prepared PhICl_{2}. The mixture was then allowed to warm to $-30^{\circ} \mathrm{C}$ and stirred for 2 h . The orange-brown suspension was evaporated to dryness and the residue was taken up at $-30^{\circ} \mathrm{C}$ in a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ mixture (1:5). The solution was filtered with a filter canula and the yellow filtrate evaporated to dryness at $-30^{\circ} \mathrm{C}$. The residue was washed with cold
pentane $\left(-78^{\circ} \mathrm{C}\right)$ to give cis / trans-6a as an intense yellow, microcrystalline solid. Yield: 310 mg (77%). Anal. Found: C, 43.80; H, 3.59. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClO}_{3} \mathrm{Re}$ (518.02) Calc.: C. 44.05; H, 3.89\%. EI-MS (70 eV): m/z 468 $\left([\mathrm{M}-\mathrm{MeCl}]^{+}\right), 440 \quad\left([\mathrm{M}-\mathrm{MeCl}-\mathrm{CO}]^{+}\right), 406 \quad([\mathrm{M}-$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right]^{+}\right), 378\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}-\mathrm{CO}\right]^{+}\right), 350 \quad([\mathrm{M}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}-2 \mathrm{CO}\right]^{+}$.

5.5. cis / trans-Cp ${ }^{*} \operatorname{Re}(C O)_{2}\left(\eta^{\prime}-\mathrm{PhCOlBr}\right.$ (cis/trans-

 6b)A solution of 660 mg (1.35 mmol) of 5 in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $-78^{\circ} \mathrm{C}$ with a solution of 0.069 $\mathrm{ml}(1.34 \mathrm{mmol})$ of Br_{2} in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ and stirred for 1 h . The solvent was then removed in vacuo at $-20^{\circ} \mathrm{C}$ and the residue chromatographed on silica at $-20^{\circ} \mathrm{C}$. Elution with $\mathrm{Et}_{2} \mathrm{O}$ /pentane ($3: 1$) afforded an orange fraction, which was evaporated to dryness to afford the mixture of isomers cis/trans-6b as an orange-yellow, micro-
crystalline solid. Yield: 600 mg (79%). Anal. Found: C, 40.00; H, 3.37. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrO}_{3} \operatorname{Re}(562.48)$ Calc.: $\mathrm{C}, 40.57$; H, 3.58\%. EI-MS (70 eV): $m / z 534$ ([M-CO] ${ }^{+}$), 506 $\left([\mathrm{M}-2 \mathrm{CO}]^{+}\right), 478\left([\mathrm{M}-3 \mathrm{CO}]^{+}\right), 468\left([\mathrm{M}-\mathrm{MeBr}]^{+}\right), 440$ $\left([\mathrm{M}-\mathrm{MeBr}-\mathrm{CO}]^{+}\right), 406\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}\right]^{+}\right), 378$ ($[\mathrm{M}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}-\mathrm{CO}\right]^{+}$), $350\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}-\mathrm{CO}\right]^{+}\right)$.

5.6 cis / trans $-\mathrm{Cp}^{*} \mathrm{Re}(\mathrm{CO})_{2}\left[\eta^{\prime}-\mathrm{PhCO} / \mathrm{I}(\right.$ cis $/$ trans- $6 c$)

A suspension of 365 mg (0.75 mmol) of 5 in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $-30^{\circ} \mathrm{C}$ with a solution of 190 $\mathrm{mg}(0.75 \mathrm{mmol})$ of I_{2} in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was then allowed to warm to room temperature and stirred for 15 min . The resulting red-brown suspension was evaporated to dryness and the residue chromatographed on silica at $-10^{\circ} \mathrm{C}$. Elution with $\mathrm{Et}_{2} \mathrm{O}$ /pentane (3:1) gave an orange fraction, which after removal of the solvent at $-10^{\circ} \mathrm{C}$ afforded the mixture of isomers cis/trans-6c as an orange-yellow microcrystalline solid. M.p. $82^{\circ} \mathrm{C}$ (dec.). Yield: 335 mg

Table 6
Crystallographic data for truns-2b and 14

	trans-2b	14	
Crystal duta			
Molecular formula	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrO}_{3} \mathrm{Re}$	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{Br}_{4} \mathrm{O}_{10} \mathrm{Re}_{4}$	
Molecular weight	402.34	1614.98	
Crystal size (mm ${ }^{\text {a }}$)	$0.1 \times 0.2 \times 0.15$	$0.5 \times 0.7 \times 0.9$	
Crystal system	monoclinic	triclinic	
Space group	$\mathrm{P} 2 / \mathrm{C}$	1 l	
7.	4	2	
$\cdots(A)$	$7.459(2)$	$9.818(6)$	
$B(A)$	15.207(7)	12.754(6)	
$\epsilon^{(A)}$	11.938(3)	$16.518(9)$	
$\alpha^{\left({ }^{(0)}\right.}$		$75.09(4)$	
$\beta\left({ }^{(8)}\right.$	94.73(2)	76.73 (4)	
$\left.\gamma^{(}\right)$		$86.92(4)$	
$V\left(\mathbb{A}^{3}\right)$	1349.5(8)	1945(2)	
$\mathrm{p}_{\text {cale }}\left(\mathrm{g} \mathrm{cm}{ }^{-1}\right)$	2.423	2.757	
$F^{\prime}(000)$	912	1460	
$\mu\left(\right.$ Mo K α) mm^{-1})	11.964	16.071	
Duta collection			
7(k)	165(5)	193(2)	
Radiation (Mo K $)^{\text {) (A) }}$	0.7069	0.71073	
$20 \mathrm{~min} . / \mathrm{max}\left({ }^{\circ}\right.$)	4. 45	3,48	
Total data	2333	6108	
Data unique	1712	5347	
Refinement			
No. of reflections	1662 (1) 2 cr 1$)$	5332 (1>481)	
No, of papameters fefined	172	433	
Absorption correction min. /max	Duabs	DmFABS	
min. $/$ max.	$0.78 / 1.347$	0.995/1.34	
min. /max. density (e \AA^{-3}) $R_{1}{ }^{\circ}$	$-1.569 / 1.413$ 0.0459	$-1.262 / 1.294$	
$R_{1} R_{2}{ }^{\prime}$	0.0459	0.0311	
$\mathrm{GOF}^{\text {c }}$	0.1215 0.956	0.0758	
${ }^{2} R_{1}=\Sigma \\| F_{0}-\left\|F_{c}\right\|\|/ \Sigma\|$	$\left.\left.F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right.$	$\frac{1.072}{\left[\Sigma\left[w\left(F_{0}^{2}-F_{c}^{2}\right)^{2}\right] /\right.}$	

(74\%). Anal. Found: C, 37.66; H, 3.31. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{IO}_{3} \mathrm{Re}$ (609.47) Calc.: C, 37.44; H. 3.31%. El-MS (70 eV): $m / z 505\left(\left[\mathrm{M}-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}\right), 406\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}\right]^{+}\right), 378$ $\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}-\mathrm{CO}\right]^{+}\right)$.

5.7. cis / trans-CpRe(CO) $\mathbf{C l}_{2}$ (cis/trans-7a) from 1 and PhICl_{2}

A suspension of 495 mg (1.18 mmol) of 1 in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $-78^{\circ} \mathrm{C}$ with a solution of 970 mg (3.53 mmol) of freshly prepared PhICl_{2} in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture was allowed to warm to room temperature and stirred for 5 h . The resulting brown solution was diluted with 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ and filtered with a filter canula from the insoluble lithium salts. The filtrate was evaporated to dryness and the residue purified by column chromatography on silica at $-15^{\circ} \mathrm{C}$. Elution with $\mathrm{Et}_{2} \mathrm{O}$ gave an orange fraction, which was evaporated to dryness to give trans-7a as a red, microcrystalline solid. Yield: 135 mg (30%). Further elution with acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ gave a brown fraction, which was evaporated to dryness. The residue was washed once with a cold $\left(-78^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O} /$ pentane $(1: 2)$ mixture to afford cis-7a as a red-brown, microcrystalline solid. Yield: $155 \mathrm{mg}(35 \%) . \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Re}$ (378.23). The two isomers were characterized by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy.
5.8. cis / trons-CpRe(CO)2 Br_{2} (cis/trans-7b) from 1 and $\mathrm{Br}_{\text {, }}$

A suspension of $330 \mathrm{mg}(0.79 \mathrm{mmol})$ of 1 in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $-78^{\circ} \mathrm{C}$ with a solution of
$0.041 \mathrm{ml}(0.79 \mathrm{mmol})$ of Br_{2} in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 2 h at $-10^{\circ} \mathrm{C}$. Selective formation of the benzoyl complexes cis-2b and trans-2b was confirmed by IR spectroscopy. A solution of $0.09 \mathrm{ml}(1.75 \mathrm{mmol})$ of Br_{2} in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added to the yellow-brown suspension and the mixture was allowed to warm to room temperature and stirred for 3 h . Completion of the reaction was observed by IR spectroscopy. The resulting brown solution was diluted with 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ and filtered with a filter canula from the insoluble lithium salts. The filtrate was evaporated to dryness and the residue washed twice with a cold $\left(-78^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O} /$ pentane $(1: 3)$ mixture and recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to afford cis / trans-7b as a brown. microcrystalline solid. Yield: 280 mg (76%). Anal. Found: $\mathrm{C}, 17.56 ; \mathrm{H}, 0.99 . \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Re}$ (467.13) Calc.: $\mathrm{C}, 18.00 ; \mathrm{H}, 1.08 \%$. The product was characterized by IR and 'H NMR spectroscopy.

5.9. $\mathrm{CpRe}\left(\mathrm{CO}_{2} \mathrm{CNEt}\right.$ (8)

A solution of $180 \mathrm{mg}(0.48 \mathrm{mmol})$ of cis / trans-7a in 30 ml of THF was treated at $-10^{\circ} \mathrm{C}$ with 0.06 ml $(0.81 \mathrm{mmol})$ of EtNC and $0.30 \mathrm{ml}(1.50 \mathrm{mmol} \mathrm{Na})$ of $0.85 \%(\mathrm{w} / \mathrm{w})$ sodium amalgam and the mixture stirred for 5 h . The resulting yellow solution was filtered with a filter canula from the grey precipitate consisting of NaCl and residual sodium amalgam, and the filtrate was evaporated to dryness. The residue was taken up in an $\mathrm{Et}_{2} \mathrm{O} /$ pentane (3:1) mixture and the solution was filtered with a filter canula. The solvent was stripped off in vacuo and the residue was crystallized from a mini= mum amount of pentane at $-78^{\circ} \mathrm{C}$ to afford complex 8

Table 7
Atomic coordinates ($\times 10^{4}$) and equivalent isotropie displacement parameters ($\AA^{2} \times 10^{3}$) for 1 rams-2b)

Atom	$\boldsymbol{\lambda}$	y	:	$U_{\text {eif }}{ }^{\text {a }}$
Re	5037(1)	3537(1)	1709(1)	14(1)
Br	6273(2)	3444(1)	-203(1)	$31(1)$
C(1)	5293(16)	2282(10)	1511(10)	28(3)
O(1)	5608(13)	1550(6)	1410(8)	32(2)
C(2)	2927(18)	3963(8)	806(9)	22(3)
O(2)	1706(12)	4238(6)	323(7)	$30(2)$
C(3)	2706(15)	3055(8)	2563(10)	22(3)
O(3)	2232(14)	3434(6)	$3386(8)$	$36(3)$
C(4)	$1621(15)$	2269(8)	2137(9)	20(3)
C(5)	1435(16)	1974(9)	1046(10)	28(3)
C(6)	428(16)	1251(9)	733(10)	23(3)
C(7)	-463(16)	797(8)	1532(10)	23(3)
C(8)	-321(15)	1078(8)	2622(10)	$22(3)$
C(9)	688(15)	1818(9)	2910(10)	24(3)
C(10)	$6074(16)$	3794(8)	3492(10)	$23(3)$ $39(4)$
C(11)	7628(19)	$3649(9)$	2910(15)	$39(4)$ $34(3)$
C(12)	$7638(17)$	4302(9)	2078(11)	$34(3)$
C(13)	6207(19)	$4870(8)$	2152(11)	$33(3)$ $26(3)$
C(14)	5230(17)	4583(8)	3002(10)	26(3)

[^6]as a white, microcrystalline solid. Yield: $100 \mathrm{mg}(58 \%)$. Anal. Found: C, 33.01; H, 2.96. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2} \operatorname{Re}$ (362.40) Calc.: C, 33.14; H, 2.78\%.

5.10. $\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{CN}^{i} \operatorname{Pr}$ (9)

A solution of 250 mg (0.66 mmol) of cis / trans-7a in 40 ml of THF was treated at $-10^{\circ} \mathrm{C}$ with 0.09 ml $(0.99 \mathrm{mmol})$ of ${ }^{1} \mathrm{PrNC}$ and $0.50 \mathrm{ml}(2.5 \mathrm{mmol} \mathrm{Na})$ of $0.85 \%(w / w)$ sodium amalgam and the mixture worked
up as described above for the synthesis of 8 to afford complex 9 as a white, microcrystalline solid. Yield: 130 mg (52\%). Anal. Found: C, 34.57; H, 3.04. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2} \operatorname{Re}(376.43)$ Calc.: C, $35.10 ; \mathrm{H}, 3.21 \%$.

5.11. $\mathrm{CpRe}(\mathrm{CO})_{2} \mathrm{CN}^{\prime} \mathrm{Bu}(10)$

A solution of 200 mg (0.53 mmol) of cis / trans-7a in 40 ml of THF was treated at $-10^{\circ} \mathrm{C}$ with 0.09 ml (0.80 mmol) of ${ }^{t} \mathrm{BuNC}$ and $0.40 \mathrm{ml}(2.0 \mathrm{mmol} \mathrm{Na})$ of

Table 8
Fractional atomic coordinates ($\times 10^{d}$) and equivalent isotropic displacement parameters ($\AA \times 10^{3}$) for 14

Atom	x	y	z	$U_{\text {eq }}{ }^{\text {a }}$
$\operatorname{Re}(1)$	2099(1)	3827(1)	1329(1)	$21(1)$
$\operatorname{Re}(2)$	1183(1)	3894(1)	3476(1)	25(1)
$\mathrm{Br}(1)$	-381(1)	3958(1)	2348(1)	28(1)
$\mathrm{Br}(2)$	2427 (1)	2375(1)	2740 (1)	30(1)
$\mathrm{Br}(3)$	$2791(1)$	5200(1)	2126(1)	34(1)
$\mathrm{Re}(3)$	644.(1)	160(1)	28.55(1)	22(1)
$\mathrm{Re}(4)$	6515(1)	- 2026(1)	2491(1)	$24(1)$
$\mathrm{Br}(4)$	6817(1)	-1630(1)	3856(1)	39(1)
C(1)	4550(9)	- 3094(7)	3343 (6)	25(2)
C(11)	3935(10)	- 3274(8)	4292(6)	$37(2)$
C(2)	5634(9)	-3732(7)	2952(6)	23(2)
C(21)	6322(10)	-4704(7)	3440(6)	$29(2)$
C(3)	5791(9)	- 3368(7)	2044(5)	23(2)
C(31)	6666(11)	- 3905(8)	$1389(6)$	37(2)
C(4)	4839 (10)	- 2478 (7)	1875(6)	20(2)
$\mathrm{C}(4)$	$4561(13)$	-1945(8)	1007(7)	46(3)
C(5)	$4069(10)$	$=2329(9)$	$2690(6)$	27(2)
C(51)	$2786(10)$	-1629(8)	2832(8)	$43(3)$
C(6)	8821(10)	630(7)	2242(7)	36(2)
C(61)	9984(11)	$=30(8)$	1892(9)	$53(3)$
C(7)	7930(10)	1379(7)	$1807(6)$	$3(2)$
C(91)	$7992(12)$	1902(8)	$848(6)$	$41(3)$
C(8)	7074(9)	1917(7)	$2409(6)$	$2(2)$
C(81)	$6183(10)$	2889(7)	$2186(7)$	$36 \times 2)$
C(9)	7440 (10)	1491(7)	$3221(6)$	28(2)
C(91)	6903 (14)	$1903(9)$	4007(7)	49(3)
C(10)	8523 (10)	$709(7)$	$3121(7)$	34(2)
C(101)	9322(12)	153(9)	3779(8)	5614)
O(1)	$4544(8)$	$561(6)$	1567(5)	47(2)
C(12)	5223 (10)	353(7)	2069(6)	29(2)
O(2) C(13)	3787(9)	$372(7)$	4187(5)	57(2)
C(13)	4766(11)	269(8)	3686(6)	35(2)
O(3) C(14)	$7691(10)$	-646(6)	677(5)	S9(2)
C(14) O(4)	$7368(11)$	- $1102(8)$	1378(7)	$38(2)$
C(15)	$9487(8)$ $8397(12)$	$-2942(7)$ $-2574(8)$	22366(6)	$64(2)$
O(3)	-544(8)	-2273(7)	$2305(8)$ $5016(5)$	$44 \times(3)$ $52(2)$
C(16)	$88(9)$	2884(9)	$4422(6)$	$33(2)$
O(6) C(17)	- $331(11)$	$5781(7)$	$4121(5)$	69(3)
O(7)	$249(12)$ $3297(8)$	5075(9)	$3885(6)$	$42(3)$
C(18)	$2462(11)$	$3896(9)$	$4571(5)$ $4163(6)$	53(2)
O(8)	1268(9)	$2156(6)$	505(5)	54(2)
C(19)	1561(10)	$2799(8)$	$839(6)$	$33(2)$
O(9)	5079(7)	3711(6)	285(4)	44(2)
C(20) O(10)	3953(10)	3760(7)	685(5)	$30(2)$
C(22)	$1493(8)$	5581(6)	-185(5)	$44(2)$
C(22)	1724(9)	4923(8)	400(6)	31(2)

[^7]$0.85 \%(\mathrm{w} / \mathrm{w})$ sodium amalgam and the mixture worked up as described above for the synthesis of 8 to afford complex 10 as a white, microcrystalline solid. Yield: 125 mg (61%). Anal. Found: C, $36.71 ; \mathrm{H}, 3.83$. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Re}(390.46)$ Calc.: C, $36.91 ; \mathrm{H}, 3.61 \%$.

5.12. Itrans-CpRe(CO)2(CNEt)BrlBr (11)

A solution of 160 mg (0.44 mmol) of 8 in 20 ml of $\mathrm{CH}_{3} \mathrm{Cl}_{2}$ was treated at $-78^{\circ} \mathrm{C}$ with a solution of 0.023 $\mathrm{ml}(0.44 \mathrm{mmol})$ of Br_{2} in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 1 h at $-25^{\circ} \mathrm{C}$. Completion of the reaction was revealed by IR spectroscopy. The resulting yellow solution was concentrated in vacuo, and cold $\mathrm{Et}_{2} \mathrm{O}\left(-78^{\circ} \mathrm{C}\right)$ was added to precipitate complex 11. Yellow solid. Yield: 220 mg (95\%). Anal. Found: C, 22.75; H, 1.76. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{Re}$ (522.21) Calc.: C, 23.00; H, 1.93%.

5.13. /trans- $\mathrm{CpRe}\left(\mathrm{CO}_{2}\left(\mathrm{CN}^{i} \mathrm{Pr}\right) \mathrm{Br} / \mathrm{Br}\right.$ (12)

A solution of $60 \mathrm{mg}(0.16 \mathrm{mmol})$ of 9 in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $-78^{\circ} \mathrm{C}$ with a solution of $8.2 \mu \mathrm{l}$ (0.16 mmol) of Br_{2} in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, stirred for 1 h at $-25^{\circ} \mathrm{C}$ and the resulting yellow solution worked up as described above for the synthesis of 11 to afford complex 12 as a yellow solid. Yield: 85 mg (99%). Anal. Found: C, 24.37; $\mathrm{H}, 2.15 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{Re}$ (536.24) Calc.: C, 24.64; H, 2.26\%.

5.14. Itrans- $\left.\mathrm{CpRe}\left(\mathrm{CO}_{2}\right)^{(C N}{ }^{\prime} \mathrm{Bu}\right) \mathrm{Br} / \mathrm{Br}$ (13)

A solution of $150 \mathrm{mg}(0.38 \mathrm{mmol})$ of 10 in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $=78^{\circ} \mathrm{C}$ with a solution of 0.02 $\mathrm{ml}(0.38 \mathrm{mmol})$ of Br_{2} in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, stired for 1 h at $-25^{\circ} \mathrm{C}$, and the resulting yellow solution worked up as described above for the synthesis of 11 to afford complex 13 as a yellow solid. Yield: 200 mg (95%). Anal. Found: C. 25.58; H, 2.30. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{Re}$ (550.27) Calc.: C, 26.19; H, 2.56\%.

6. Crystal structure determination of trans-2b and

 14A summary of the crystal data, data collection and refinement for trans-2b and 14 is given ir. Table 6. Crystals suitable for X-ray structure determination were selected using a modified device, similar to that of Veith and Bärnighausen [33]. The crystals were mounted on a glass fibre and transferred to an Enraf-Nonius CAD4 four circle diffractometer (for trans-2b) and a STOE STADI4 four circle diffractometer (for 14) equipped with a low temperature device. Lattice parameters derived from the setting angles of 25 reflections in the range $18^{\circ} \leq 2 \theta \leq 30^{\circ}$ for 2 b and 30 reflections in the range $27^{\circ} \leq 2 \theta \leq 29^{\circ}$ for 14 were obtained. Data
were collected in the $\omega-2 \theta$ scan mode. After every 200 reflections for trans- 2 b and every 2 h for 14 , three standard reflections were monitored and the crystal reoriented in case of deviation between 0.1° and 0.15°. Intensity data were corrected for Lorentz and polarization effects. Structure solution was performed by Patterson methods (Shelxs-86) [34] and subsequent difference Fourier synthesis (shelxl-93) [35]. Refinement on F^{2} was carried out by full-matrix least-squares techniques (SHELXL-93). Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included using a riding model with $d(\mathrm{C}-\mathrm{H})=0.96 \AA$ and $U_{\text {iso }}=0.08 \AA^{2}$). Neutral atom scattering factors were taken from Cromer and Mann [36]. Geometrical calculations and illustrations were performed with PLATON [37]. Final ositional and equivalent isotropic thermal parameters are given in Table 7 for trans-2b and in Table 8 for 14.

7. Supplementary material available

Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-405501 for trans$\mathbf{2 b}$ and CSD-405500 for 14, the names of the authors, and the journal citation.

Acknowledgements

We thank the Fonds der Chemischen Industric, the Deutsche Forschungsgemeinschaft and the VolkswagenStiftung for financial support, Dr. U. Hartmann and U. Kursawe for the elemental analyses, Dr. H. Hemling for help with the crystal structure determination of trans-2b and Dr. M. von Löwis and A. Woyda for recording the mass spectra.

References

[1] J.P. Collman, L.S. Hegedus, J.R. Norton and R.G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, USA, 1987.
[2] (a) W. Hieber, G. Braun and W. Beck, Chem. Ber., 93 (1960) 901; (b) H.D. Kaesz, R.B. King and F.G.A. Stone, Z. Naturforsch., 15 L (1960) 763; (c) A.N. Nesmeyanov, K.N. Anisimov. N.E. Kolobova and A.A. Ioganson, Dokl. Chem., 175 (1967) 742; (d) D.J. Desrosiers and R.P. Hugles, J. Am. Chem. Soc., 103 (1981) 5593; (e) M.J. Schweiger, U. Nagel and W. Beck, J. Organomet. Chem., 355 (1988) 289; (f) J.M. Andersen and J.R. Moss, J. Organomet. Chem., 494 (1995) 105.
[3] (a) T. Kruck and M. Noack, Chem. Ber., 97 (1964) 1693; (b) A.M. Brodie, G. Hulley, B.F.G. Johnson and J. Lewis, J. Organomet. Chem., 24 (1970) 201.
[4] (a) R.W. Brink and R.J. Angelici, Inorg. Chem., 12 (1973) 1062: (b) R.J. Angelici and R.W. Brink, Inorg. Chem., 12 (1973) 1067; (c) H. Behrens, R.J. Lampe, P. Merbach and M. Moll, J. Organomet. Chem., 159 (1978) 201.
[5] (a) H. Behrens, E. Lindner and P. Pässler, Z. Anorg. Allg. Chem., 365 (1969) 137; (b) R.J. Angelici and A.E. Kruse, J. Organomet. Chem., 22 (1970) 461; (c) C.M. Lukehart and J.V. Zeile, J. Am. Chem. Soc., 98 (1976) 2365; (d) K.P. Darst and C.M. Lukehart, J. Organomet. Chem., 171 (1979) 65; (e) A.C. Filippou, E.O. Fischer, G. Müller and H.G. Alt. J. Organomet. Chem., 329 (1987) 223; (f) S. Feracin, H.-U. Hund, H.W. Bosch, E. Lippmann, W. Beck and H. Berke, Helv. Chim. Acta, 75 (1992) 1305.
[6] E.O. Fischer and A. Riedel, Chem. Ber., 101 (1968) 156.
[7] (a) E.O. Fischer, E. Offhaus, J. Müller and D. Nöthe, Chem. Ber., 105 (1972) 3027; (b) E.O. Fischer, T.L. Lindner, H. Fischer, G. Huttner, P. Friedrich and F.R. Kreißl, Z. Naturforsch., $32 b$ (1977) 648.
[8] (a) C.P. Casey, C.R. Cyr, R.L. Anderson and D.F. Marten, J. Am. Chem. Sic:, 97 (1975) 3053; (b) C.P. Casey and D.M. Scheck, J. Am. Chem. Soc., 102 (1980) 2723.
[9] (a) A.N. Nesmeyanov, N.E. Kolobova, Y.V. Makarov, E.1. Kazimirchut. and K.N. Anisimov, Izv. Akud. Nauk SSSR, Ser. Khim., (1976) 159; (b) K.I. Goldberg and R.G. Bergman. J. Am. Chem. Soc.. /// (1989) 1285.
[10] E.O. Fischer, C. Apostolidis, E. Dornberger, A.C. Filippou, B. Kanellakopulos, B. Lungwitz, J. Mülter, B. Powietzka, J. Rebizant and W. Roth. Z. Nuturforsch., 50b (1995) 1382.
[11] (a) E.O. Fischer. W. Held, F.R. Kreißl, A. Frank and G. Hutner, Chem. Ber., 110 (1977) 656; (b) C.P. Casey and T.J. Burkhardt, C.A. Bunnell and J.C. Calabrese, J. Am. Chem. Soc. 09 (1977) 212%.
[12] (a) E.O. Fischer, R.L. Clough and P. Stuckler. J. Organomet Chem., 130 (1976) C6; (b) E.O. Fischer and A. Frank. Chem. Ber., $11 /$ (1978) 3740,
[13] (a) E.O. Fischer, R.L. Clnugh, O. Besl and F.R. KpeiB1, Angew, Citm. 88 (1976) 584: Angew, Cinem. Int. Ed. Engl. 1.5 (1976) 543.
[14] W.A. Hefmanm, Chem, Ber, 108 (1975) 486.
[15] (a) C.P, Casey, R.A. Bogegs and R.I. Anderson, J. Am, Chem. Sici, 94 (1972) 8947; (b) EO. Fischer and S. Riedmuller. Chem, Ber., 107 (1974) 915; (c) C.M. Lukehaft and J, V. Zelle, J. Orgamomet. Chem., 97 (1975) 421; (d) W.D. Wulf and D.C. Yang, J. Am, Chem. Soci, 105 (1983) 6726.
[16] C.J. Pouchert (ed.), The Aldrich Librafy of FTV:/R Spectra, Vol. 2. 1985, p. 340.
[17] (a) C. F. Baffientos Penna, F.W.B, Einstein, D. Sutton and A.C. Willis, thorg. Chem., 19 (1980) 2740; (b) F.W.B. Einstein. A.H. Klahn-Oliva, D. Sutton and K.G. Tyers, Orgamomesallics. 5 (1986) 53.
[18] (a) N.E. Kolobova, Z.P. Zalueva and E.I. Kazimirchuk, Izv. Akad. Nauk SSSR, Ser. Khim., (1981) 408; (b) R.B. King, J. Inorg. Nucl. Chem., 29 (1967) 2119.
[19] (a) A.N. Nesmeyanov, N.E. Kolobova, Y.V. Makarov and K.N. Anisimov, Izv. Akad. Nauk SSSR, Ser. Khim., (1969) 1826; (b) R.B. King, R.H. Reimann and D.J. Darensbourg, J. Organomet. Chem., 93 (1975) C23; (c) R.B. King and R.H. Reimann, Inorg. Chem., 15 (1976) 183.
[20] M.R. Terry, L.A. Mercando, C. Kelley, G.L. Geoffroy, P. Nombel, N. Lugan, R. Mathieu, R.L. Ostrander, B.E. OwensWaltermire and A.L. Rheingold, Organometallics, 13 (1994) 843.
[21] (a) A.H. Klahn-Oliva, R.D. Singer, J.M. Aramini and D. Sutton, Inorg. Chem., 28 (1989) 4217; (b) C. Leiva, K. Mossert, A.H. Klahn and D. Sutton, J. Organomet. Chem., 469 (1994) 69.
[22] L.J. Todd and J.R. Wilkinson, J. Organomet. Chem., 77 (1974) 1.
[23] M.J. Webb and W.A.G. Graham, J. Organomer. Chem., 93 (1975) 119.
[24] ; ubacek, R. Hoffuann and Z. Havlas, Organometallic:s, I .) 180.
[25] ." A. Churchill, K.N. Amoh and H.J. Wasserman, Inorg. Chem., 20 (1981) 1609.
[26] A.S. Foust, J.K. Hoyano and W.A.G. Graham, J. Organomet. Chem., 32 (1971) C65.
[27] F. Calderazzo, I.P. Mavani, D. Vitali, I. Bernal, J.D. Korp and J.L. Atwood, J. Organomet. Chem., 160 (1978) 207.
[28] J.L. Atwood. J.K. Newell, W.E. Hunter, I. Bernal, F. Calderazzo, I.P. Mavani and D. Vitali, J. Chem. Sic., Chem. Commun.. (1976) 441.
[29] J.D. Korp, I. Bernal, J.L. Atwood, F. Calderazzo and D. Vitali, J. Chem. Soc.. Dalton Trans., (1979) 1492.
[30] R.L. Davis and N.C. Baenziger. Imorg. Nuel. Chem. Leetr., 13 (1977) 475.
[31] H.J. Lucas and E.R. Kennedy. Ors. Syoth. Collect., i (1976) 482.
[32] (a) J. Casanova, Jr., R.E. Schuster and N.D. Werner, J. Chem. Soc. (196) 42RO; (b) R.E. Schuster, J.E. Scott and J. Casanova. Jf. Ors, Swhth, do (1906) 75.
[33] M. Veith and H. Bamighasen. Acre (rywallosfr. B. iO) (1974) 1806.
 hution, Universital Gbitingen, Germany, 1986.
 remmination, University of Cambridge, UK, 1993.
[36] D.T. Cromer and J.B. Mann. Actes Crystallogr. A, 24 (1908) 321.
[37] (a) A.L. Spek, Pluton-92 and Paitun 93, Graphics program, Universitat Utrecht, Netherlands, 1992 and 1993; (b) A.L. Spek. A.sa Crystallesgr. A. 46 (1990) C34.

[^0]: - Corresponding author.
 ${ }^{1}$ Dedicated to Professor Dr. M.L.H. Green on the occasion of his 60th ierthday.
 ${ }^{2}$ Present address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

[^1]: The $u(C-0)_{\text {xyl }}$ absorption of cis-2b was not detected because of the low concentration of this isomer.

[^2]: a.b.s Resonances of meta-, para- and ortho-protons of the phenyl group respectively; ${ }^{d}$ the phenyl proton resonances of the cis and trans isomer are superimposed; ${ }^{e}$ the methyl protons of the $\mathrm{Cp}{ }^{*}$ ligand of the cis and trans isomer have, by accident, the same chemical shift.

[^3]: ${ }^{5 . ⿱ 亠 ⿴ 囗 口 ⿱ 日 一}$

[^4]: ${ }^{a}$ cp denotes the centre of the cyclopentadienyl ring.

[^5]: ${ }^{2} \mathrm{cp}{ }^{*}$ (1) and $\mathrm{cp}{ }^{*}$ (2) denote the centres of the pentamethylcyclopentadienyl rings.

[^6]: ${ }^{\text {a }} U_{\text {eq }}$ is defined as one thind of the trace of the orthogonalized $U_{i j}$ tensor.

[^7]: ${ }^{9} U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

